Reaction of Dicyano Epoxides with Thiocyanate Ion: Route to α-Thiocyanato Derivatives or to 2-Acetylimino-1,3-oxathioles and X-Ray Crystal Structure of 2-Acetylimino-4-(4-tolyl)-1,3-oxathiole-5-carbonitrile

Alenka Majcen Le Maréchal, ${ }^{*, a}$ Albert Robert ${ }^{b}$ and Ivan Leban ${ }^{\text {c }}$
${ }^{a}$ University of Maribor, Technical Faculty, Department of Mechanical Engineering, Institute for Textile Chemistry, Maribor, Slovenia
${ }^{b}$ Groupe de Recherches de Chimie Structurale, Université de Rennes I, URA CNRS 704, Avenue du Général Leclerc, 35042 Rennes Cédex, France
${ }^{c}$ Department of Chemistry and Chemical Technology, Edvard Kardelj, University of Ljubljana, Slovenia

β-Aryl dicyano epoxides reacted as synthetic equivalents of ketene dications with KSCN in aq. dimethyl sulfoxide or EtOH , or with $\mathrm{NH}_{4} \mathrm{SCN}$ in acetonitrile, to give α-thiocyanato derivatives. When $\mathrm{Ac}_{2} \mathrm{O}$ was used as a solvent, the 1,3-oxathiolane intermediates were trapped as 2 -acylimino-1,3-oxathioles. This new synthetic route to 1,3-oxathioles was extended to 1,3 -oxaselenoles by using KSeCN as the reactant in $\mathrm{Ac}_{2} \mathrm{O}$. The crystal structure of an important intermediate compound, 2-acetylimino-4-(4-tolyl)-1,3-oxathiole-5-carbonitrile, was determined by means of X-ray diffraction.

The usual method for the preparation of simple thiiranes is the thiocyanate procedure using epoxides as starting materials. ${ }^{1}$ The reaction is a nucleophilic ring opening of the epoxide. It proceeds through an oxathiolane intermediate which usually cannot be isolated. The isolation of thiiranes is not difficult unless they are substituted with electron-withdrawing groups which promote the decomposition of thiiranes into alkenes. ${ }^{1 a . b}$ In this context it seemed important to us to find out how the presence of two electron-withdrawing cyano groups, which are also good leaving groups, affected the course of reaction of dicyano epoxides 1 with a thiocyanate ion. We have already shown that epoxides 1 are interesting starting materials in organic synthesis because they can be considered as synthetic equivalents ${ }^{2}$ of ketene dications $\mathbf{A .}^{3}$ This is the reason why

we assumed that the reaction of epoxide 1 with thiocyanate ion would not give the corresponding thiiranes (or alkenes), but would lead to x-thiocyano acids or their derivatives. In this paper we shall demonstrate the correctness of our assumptions and also describe a new way of synthesizing 2-acetylimino-1,3-oxathioles and 2-acetylimino-1,3-oxaselenoles.

Results and Discussion

When epoxides $1\left(R^{1}=A r ; R^{2}=H\right)$ reacted at room temperature with KSCN, the products obtained depended on the solvent used for the reaction. If the solvent was aq. dimethyl sulfoxide (DMSO), a mixture of acids 2 and 3 was obtained, both of which were characterized by means of IR, NMR and mass spectra (Experimental section). If ethanol was used as the solvent, a mixture of x-thiocyanato ester 4 and the thiazole 5 was obtained, and both products were characterized. However, the only product isolated, in moderate yield (51%), by reaction of compound $1\left(\mathrm{R}^{1}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right.$) with KSCN in

[^0]ethanol was the oxathiole 6. In addition to its spectral data, compound 6 was characterized by its reaction with $\mathrm{Ac}_{2} \mathrm{O}$ giving 7 , and by its hydrolysis to the thiazolone 8 . Of more synthetic interest was the opening of epoxides $1\left(R^{2}=A r ; R^{1}=H\right)$ with ammonium thiocyanate in dry acetonitrile. Under these conditions, x-thiocyanato amides 9 were easily purified with reasonable yield ($55-65 \%$) except when the reaction was carried out with the epoxide $1\left(\mathrm{R}^{1}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right)$. In that case, the only product isolated was the oxathiole $6(\mathrm{Ar}=p$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$). Having assumed that compound 6 resulted from the acylation of an oxathiole intermediate D, we decided to trap this intermediate by $\mathrm{Ac}_{2} \mathrm{O}$. We succeeded in preparing the 2 -acetylimino-1,3-oxathioles 7 by reaction of epoxides $1\left(\mathrm{R}^{1}=\right.$ $\mathrm{Ar} ; \mathrm{R}^{2}=\mathrm{H}$) with KSCN in $\mathrm{Ac}_{2} \mathrm{O}$ (Scheme 1).

The previously presented experimental results call for the following remarks: as with the protic nucleophilic reagents used until now for the ring opening ${ }^{3}$ of epoxides $1\left(R^{1}=A r, R^{2}=\right.$ H), we observe that the reaction is highly regioselective. The nucleophile always attacks the carbon β from the two cyano groups. In order to confirm this fact, the structure of compound $7\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ was clearly established by X-ray analysis. The view of the molecule (Table 1) is shown in Fig. 1. Selected

Table 1 Fractional atomic co-ordinates for the non-hydrogen atoms for 2-acetylimino-3-(4-tolyl)-1,3-oxathiole-5-carbonitrile 7 ($\mathrm{Ar}=p$ $\mathrm{MeC}_{6} \mathrm{H}_{4}$)

	x		
$\mathrm{~S}(1)$	$0.08959(20)$	$0.0803(4)$	$0.13224(12)$
$\mathrm{C}(2)$	$0.2574(7)$	$0.0454(12)$	$0.1476(5)$
$\mathrm{O}(3)$	$0.3039(5)$	$-0.0212(9)$	$0.2255(3)$
$\mathrm{C}(4)$	$0.2060(8)$	$-0.0381(13)$	$0.2730(5)$
$\mathrm{C}(5)$	$0.0877(8)$	$0.0087(13)$	$0.2357(5)$
$\mathrm{C}(8)$	$0.2471(9)$	$-0.1135(14)$	$0.3536(5)$
$\mathrm{N}(9)$	$0.2787(8)$	$-0.1760(13)$	$0.4191(5)$
$\mathrm{N}(1)$	$0.3403(6)$	$0.0725(11)$	$0.0998(4)$
$\mathrm{C}(6)$	$0.2883(9)$	$0.1438(13)$	$0.0214(5)$
$\mathrm{O}(1)$	$0.1719(6)$	$0.1665(10)$	$-0.0031(4)$
$\mathrm{C}(7)$	$0.3875(9)$	$0.1874(15)$	$-0.0312(5)$
$\mathrm{C}(10)$	$-0.0333(7)$	$0.0145(12)$	$0.2698(5)$
$\mathrm{C}(11)$	$-0.1523(8)$	$-0.0264(12)$	$0.2186(5)$
$\mathrm{C}(12)$	$-0.2673(9)$	$-0.0181(14)$	$0.2496(5)$
$\mathrm{C}(13)$	$-0.2669(8)$	$0.0409(12)$	$0.3312(5)$
$\mathrm{C}(14)$	$-0.1495(8)$	$0.0827(13)$	$0.3815(5)$
$\mathrm{C}(15)$	$-0.0323(8)$	$0.0711(13)$	$0.3518(5)$
$\mathrm{C}(16)$	$-0.3947(8)$	$0.0580(17)$	$0.3630(6)$

$+\mathrm{SCN}^{-}$
1 ($R^{1}=A r ; R^{2}=H$) 1

B

3
10
5

7

$+$

11

Scheme 1 Reagents: i, water; ii, NH_{3}; iii, EtOH ; iv, H^{+}, water; $\mathrm{v}, \mathrm{Ac}_{2} \mathrm{O}$

Fig. 1
bond distances and angles are in Table 2. The bond lengths are normal and in agreement with expectation. The bonds $\mathrm{N}^{1}-\mathrm{C}^{2}$ $[1.279(11) \AA]$ and $C^{4}-C^{5}[1.318(11) \AA]$ clearly have some double-bond character. The separate acetylimino group, 1,3oxathiole ring and phenyl ring are planar to within 0.006 (9), $0.012(9)$ and $0.015(10) \AA$, respectively. The phenyl ring is twisted by 38.3° out of the nearly planar 2-acetylamino-1,3oxathiole moiety. The dihedral angle between the acetylimino group and the 1,3 -oxathiole ring is 6.1°. It seems that this planar arrangement is achieved through a weak single-bond-no-bond interaction ${ }^{4} \mathrm{~S}^{1} \cdots \mathrm{O}$ of $2.579(7) \AA$. It should be noted that the reaction of the studied epoxides with KSCN in

Table 2 Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses for 2-acetylimino-3-(4-tolyl)-1,3-oxathiole-5-carbonitrile 7 ($\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}$)

$\mathrm{S}(1)-\mathrm{C}(2)$	$1.743(8)$	$\mathrm{C}(6)-\mathrm{O}(1)$	$1.219(11)$
$\mathrm{S}(1)-\mathrm{C}(5)$	$1.763(9)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.492(14)$
$\mathrm{C}(2)-\mathrm{O}(3)$	$1.361(9)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.395(10)$
$\mathrm{C}(2)-\mathrm{N}(1)$	$1.279(11)$	$\mathrm{C}(10)-\mathrm{C}(15)$	$1.393(12)$
$\mathrm{O}(3)-\mathrm{C}(4)$	$1.394(11)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.386(13)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.318(11)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.394(12)$
$\mathrm{C}(4)-\mathrm{C}(8)$	$1.414(12)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.378(11)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.470(12)$	$\mathrm{C}(13)-\mathrm{C}(16)$	$1.521(13)$
$\mathrm{C}(8)-\mathrm{N}(9)$	$1.149(12)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.397(13)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.392(10)$		
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)$	$90.3(4)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	$123.3(7)$
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	$111.3(5)$	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$114.1(7)$
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$131.6(5)$	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$122.6(7)$
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{N}(1)$	$117.0(6)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.2(7)$
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)$	$112.0(6)$	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(15)$	$120.8(7)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$116.2(7)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	$118.9(7)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	$114.7(7)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.8(7)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)$	$129.0(7)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.4(7)$
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$110.1(6)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$118.8(7)$
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	$120.7(6)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	$119.8(7)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$129.2(6)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	$121.4(7)$
$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{N}(9)$	$179.0(11)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$121.5(7)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	$114.8(7)$	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	$119.6(7)$

$\mathrm{Ac}_{2} \mathrm{O}$ results in only one product, which was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. However, no signal was observed which could be attributed to the presence of a possible isomer (sulfur on the carbon α from the cyano groups).

This regioselectivity is accounted for by assuming that the epoxide is first protonated (by the protic solvent or by $\mathrm{NH}_{4}{ }^{+}$) so that the reaction proceeds through a carbocationic-like transition stage. The consequence is that the practical positive charge will develop mainly on the carbon β from the two cyano groups of the epoxide 1.

As previously mentioned, the initially formed cyanohydrins \mathbf{B} and cyanoformyl intermediates \mathbf{C} were too reactive to be isolated. ${ }^{3}$ Intermediates \mathbf{C} were trapped either with the solvent or with NH_{3} (conjugate base of the ammonium ion of $\mathrm{NH}_{4} \mathrm{SCN}$) to give thiocyanates 2,4 and 9 . The formation of the oxathiole 7, observed when the reaction is performed in $\mathrm{Ac}_{2} \mathrm{O}$, leads us to postulate possible reversible formation of the oxathiole D. As has been said before, similar oxathioles, formed during the reaction of 'normal' epoxides with ${ }^{-} \mathrm{SCN}$, evolve into thiiranes. The specific reaction observed in our case is linked to the possible elimination of cyanohydric acid, either from the cyanohydrin \mathbf{B} to give \mathbf{C} or from the 2 -iminooxathiolane \mathbf{D} to give oxathioles 7 in the presence of $\mathrm{Ac}_{2} \mathrm{O}$. The reaction is highly chemoselective as it is always the ${ }^{-} \mathrm{SCN}$ nucleophile that opens the epoxide, while the second nucleophile (solvent or NH_{3}) reacts with the cyanoformyl intermediate \mathbf{C}. It appears that the thiocyanato group in compounds 2 and 4 is reactive toward the nucleophile present in the medium (water or EtOH), and as a consequence they are obtained together with compounds 3 and 5. The formation of the 4-hydroxythiazole is likely to be explained by the reaction of EtOH with the ${ }^{-} \mathrm{SCN}$ group, subsequently followed by an intramolecular heterocyclization. We have been able to show that the α-thiocyanato acid 2 ($\mathrm{Ar}=$ Ph) reacts with ethanol to give the ester 12 (Scheme 2), while the amide 9 is quantitatively hydrolysed to give thiocarbamate 10 (Scheme 1). The rate of the reaction $9 \longrightarrow \mathbf{1 0}$ is accelerated by the presence of an acid, so that this reaction can be observed during the recording of the NMR spectrum of compound 9 in $\left[\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right.$ (TFA)] as solvent.

Although quite stable, the oxathioles 6 and 7 can be hydrolysed to give, according to experimental conditions, either the 2-oxo-1,3-thiazole-4-carboxamide 11, or the 2-oxo-1,3-thia-zole-4-carboxylic acid 8 , or a mixture of compounds $11+8$. The observed conversion of an oxathiole into a thiazole ring during the hydrolysis of the imino group of the oxathiole is not unexpected since a closely related reaction has already been described. ${ }^{5}$ In our case, the concurrent hydrolysis of a cyano group into a carboxylic group is worth noting as the obtained 1,3-thiazole-4-carboxylic acids 8 can be considered as dehydroamino acids which are compounds of special interest. ${ }^{6}$ In order to extend the scope of the afore described reaction of KSCN with the epoxides $1\left(\mathrm{R}^{1}=\mathrm{Ar} ; \mathrm{R}^{2}=\mathrm{H}\right)$, we have studied the reaction of this same epoxide with potassium selenocyanate in $\mathrm{Ac}_{2} \mathrm{O}$. As described in a short communication, we succeeded in the synthesis of 2 -acetylimino-1,3-oxaselenoles 13 which are the first compounds so far described in the oxaselenole series. ${ }^{7}$ We tried also to use the ester epoxides 14 instead of epoxide $1\left(\mathrm{R}^{1}=\right.$ $\operatorname{Ar} ; \mathrm{R}^{2}=\mathrm{H}$). These ester epoxides 14 were less reactive toward $\mathrm{NH}_{4} \mathrm{SCN}$ than is epoxide $1\left(\mathrm{R}^{1}=\mathrm{Ar} ; \mathrm{R}^{2}=\mathrm{H}\right)$, and the reaction needed to be performed in boiling ethanol. Under these experimental conditions $\mathrm{NH}_{4} \mathrm{SCN}$ rearranged into thiourea, ${ }^{8}$ which subsequently reacted with epoxide 14 to give the 2 -amino-1,3-thiazole 15 as reported. ${ }^{9}$ This last reaction is of no synthetic value because the thiazole 15 is more easily prepared from the reaction of thiourea with epoxide $14 .{ }^{9}$ On the other hand, the reaction of epoxide 14 with KSCN in $\mathrm{Ac}_{2} \mathrm{O}$ gave the new 2-acetylimino-1,3-oxathiole 16, which is of similar structure to the nitrile 7 (Scheme 2).

16

13

Scheme 2 Reagents: i, EtOH ; ii, $\mathrm{NH}_{4} \mathrm{SCN}$
Conclusions.-The gem-disubstitution in the epoxides 1 by two cyano groups acting as leaving groups explains the synthetic equivalence of these epoxides with ketene dications \mathbf{A}. The thiocyanate ion reacts chemoselectively and regioselectively with epoxides $1\left(\mathrm{R}^{1}=\mathrm{Ar} ; \mathrm{R}^{2}=\mathrm{H}\right)$ to give the α-thiocyanato derivatives 2,4 and 9 depending on the nature of the second nucleophile present in the medium (respectively water, EtOH , NH_{3}). However, owing to the reactivity of the thiocyanato group, the reaction is of synthetic utility for the preparation of thiocyanato amides 9 only.
When the reaction is performed in $\mathrm{Ac}_{2} \mathrm{O}$, the oxathiolane intermediate \mathbf{D} is trapped by $\mathrm{Ac}_{2} \mathrm{O}$ and the reaction is an interesting way of preparing 2 -acetylimino- 1,3 -oxathioles 7 . We have shown that the scope of this reaction can be extended to α-cyano epoxy ester 14 and that selenocyanate can be used instead of thiocyanate. This reaction allowed us to prepare the first compounds of the oxaselenole series.

Experimental

Dicyano epoxides 1 and 14 were prepared according to the method developed in our laboratory. ${ }^{10}$ NMR spectra were recorded on Bruker WP80 and AM300 spectrometers using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. IR spectra were obtained on a Perkin-Elmer 1420 IR spectrometer. Mass spectra were recorded on Varian Mat 311. Microanalyses were carried out in the microanalytical laboratory of CNRS (Lyon). M.p.s were measured by using a Kofler bank.

Preparation of α-Thiocyanato Acids $2\left(\mathrm{Ar}=\mathrm{Ph}, \mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ and the Thiocarbamoyl Acid $3\left(\mathrm{Ar}=\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$--An aqueous solution ($2 \mathrm{~cm}^{3}$) of $\mathrm{KSCN}(15 \mathrm{mmol})$ was added to a solution of epoxide $1\left(\mathrm{R}^{1}=\mathrm{Ph}\right.$ or $\left.p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right)(6 \mathrm{mmol})$ in DMSO $\left(10 \mathrm{~cm}^{3}\right)$. After $4 \mathrm{~h}(\mathrm{Ar}=\mathrm{Ph})$ or $1 \mathrm{~h}\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$ the reaction mixture was diluted in cold water $\left(80 \mathrm{~cm}^{3}\right)$. The pH was adjusted with $\mathrm{HCl}(30 \%)$ to 6 using a pH test paper, and the mixture was extracted with diethyl ether. The ethereal phase was washed with water and then extracted with aq. NaHCO_{3} (10%). The water phase was acidified (pH 5), and the obtained oil was extracted with diethyl ether. After evaporation of the ether, the acid 2 was obtained. When $\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$, a mixture of products 2 and 3 was isolated. The two products were separated by recrystallization from benzene. A mixture was also obtained in the case of $\mathrm{Ar}=\mathrm{Ph}$, but only the thiocyanate 2 was properly purified.

Compound $2(A r=P h)(40 \%)$, m.p. $125^{\circ} \mathrm{C}$ (from benzene); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3505 \mathrm{br}(\mathrm{OH}), 3100 \mathrm{br}(\mathrm{OH})$, 2161s (SCN), $1757 \mathrm{~s}(\mathrm{CO})$ and $1050 \mathrm{br}(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 9.71(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.40(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and $5.59(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ (Found: M^{+}, 193.020. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{2} \mathrm{~S}$ requires $M, 193.019$).

Compound $2\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)(20 \%)$, m.p. $120^{\circ} \mathrm{C}$ (from benzene); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3500 \mathrm{~s}(\mathrm{OH}), 3100 \mathrm{br}(\mathrm{OH}), 2161 \mathrm{~s}$ $(\mathrm{SCN}), 1755 \mathrm{~s}(\mathrm{CO}), 1718 \mathrm{~s}(\mathrm{CO})$ and $1050 \mathrm{br}(\mathrm{OH}) ; \delta_{\mathrm{H}}(80 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.72(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ and $5.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$.

Compound $3\left(\mathrm{Ar}=\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)(35 \%)$, m.p. $170^{\circ} \mathrm{C}$ (from benzene) (Found: $\mathrm{C}, 44.4 ; \mathrm{H}, 3.7 ; \mathrm{N}, 5.6 \% ; \mathrm{M}^{+}, 244.992$. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClNO}_{3} \mathrm{~S}$ requires C, 44.20; $\mathrm{H}, 3.27 ; \mathrm{N}, 5.72 \% ; M, 244.991$); $v_{\max }$ (Nujol) $/ \mathrm{cm}^{-1} 3417 \mathrm{~s}(\mathrm{NH}), 3187 \mathrm{br}(\mathrm{OH}), 1706 \mathrm{~s}(\mathrm{CO}), 1644 \mathrm{~s}$ (CO) and $878 \mathrm{br}(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{COCD}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.65$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$ and $5.20(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$.

Preparation of α-Thiocyanato Ester $4(A r=P h)$ and the Thiazoles $5\left(\mathrm{Ar}=\mathrm{Ph}, \mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$.-Epoxides $1\left(\mathrm{R}^{1}=\mathrm{Ph}, p-\right.$ $\left.\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right)(15 \mathrm{mmol})$ and $\mathrm{KSCN}(15 \mathrm{mmol})$ were dissolved in absolute ethanol ($120 \mathrm{~cm}^{3}$). The reaction mixture was left at room temperature for 24 h . The ethanol ($100 \mathrm{~cm}^{3}$) was then evaporated off and the residue was diluted with water $\left(300 \mathrm{~cm}^{3}\right)$. The mixture was extracted with diethyl ether, and the extract was washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the ether the obtained oil slowly crystallized to deposit the thiazole 5. In the case of $\mathrm{Ar}=\mathrm{Ph}$, the obtained oil was distilled ($P 0.5 \mathrm{mmHg} ; T 150^{\circ} \mathrm{C}$). A more volatile fraction was captured in the form of an oil which slowly crystallized to give the thiazole 5 , while the remaining oil corresponded to the thiocyanato ester 4.

Compound $4(A r=P h)(20 \%), \quad v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} \quad 2159 \mathrm{~s}$ $(\mathrm{SCN}), 1748 \mathrm{vs}(\mathrm{CO})$ and $1735 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 7.40(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.34(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.26\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right)$ and $1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}) ; m / z 221\left(\mathrm{M}^{+}+; 163(\mathrm{M}-\mathrm{SCN})^{++}\right.$and 148 $\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right)^{++}$(Found: M^{++}, 221.051. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$ requires M, 221.051).

Compound $5\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)(14 \%)$, m.p. $167^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3550 \mathrm{br}(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{COCD}_{3} ;\right.$ $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.66\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right)$ and $1.54(3 \mathrm{H}, \mathrm{t}$, Me).

Compound $5(\mathrm{Ar}=\mathrm{Ph})(14 \%)$, m.p. $169^{\circ} \mathrm{C}$ (from EtOH); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3559 \mathrm{br}(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{COCD}_{3} ;\right.$ $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 8.58(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 4.42\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right)$ and $1.36(3 \mathrm{H}, \mathrm{t}, \mathrm{Me})$.

Preparation of the 2-(Thiocyanatoacetylimino)-1,3-oxathiole 6 ($\mathrm{Ar}=\mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$).-After 2 h at room temperature a solution of epoxide $1\left(\mathrm{R}^{1}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right)(1 \mathrm{~g}, 4.6 \mathrm{mmol})$ and KSCN $(1 \mathrm{~g}, 10 \mathrm{mmol})$ in ethanol $\left(100 \mathrm{~cm}^{3}\right)$ was diluted with water. The obtained precipitate was washed successively with $\mathrm{HCl}(30 \%)$, water, ethanol and diethyl ether to give the title product $(2.38 \mathrm{~g}, 51 \%)$, m.p. $292{ }^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }}(\mathrm{Nu}-$ jol) $/ \mathrm{cm}^{-1} 2211 \mathrm{~s}(\mathrm{CN})$ and $2151 \mathrm{~s}(\mathrm{SCN}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\right.$ TFA; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 8.0(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ and $3.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; m / z 467$ (M^{++}not observed), $274\left[\mathrm{M}-\mathrm{CH}(\mathrm{SCN}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right]^{++}, 228$ $\left(274-\mathrm{NO}_{2}\right)^{++}, 193\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\right)^{-+}, 192(193-\mathrm{H})$ and $146\left(192-\mathrm{NO}_{2}\right)^{-+}$

Preparation of 2-Acetylimino-1,3-oxathioles 7 ($\mathrm{Ar}=\mathrm{Ph}$, p$\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{MeOC} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}$).-The epoxide $1\left(\mathrm{R}^{1}=\mathrm{Ph}, p-\mathrm{ClC}_{6} \mathrm{H}_{4}, p-\mathrm{MeOC}_{6} \mathrm{H}_{4}, p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right.$; $\left.\mathbf{R}^{2}=\mathrm{H}\right)(1 \mathrm{~g})$ was added to a solution of $\operatorname{KSCN}(0.7 \mathrm{~g}, 7.1$ $\mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right.$, but $6 \mathrm{~cm}^{3}$ for $\mathrm{R}^{1}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}$ and $\left.\mathrm{R}^{1}=\mathrm{Ph}\right)$. After $3 \mathrm{~h}\left(15 \mathrm{~h}\right.$ for $\left.\mathrm{R}^{1}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ the reaction mixture was put into a refrigerator for 30 min . The precipitate was filtered off and washed with water (to eliminate AcOH).

Another way of preparing compound $7\left(\mathrm{R}^{1}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ consists of dissolution of the thiocyanate $6\left(\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$
($0.5 \mathrm{~g}, 1 \mathrm{mmol}$) in $\mathrm{Ac}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ and, after 8 h , water is added and the required product $7(0.2 \mathrm{~g}, 69 \%)$ is obtained.

Compound $7(\mathrm{Ar}=\mathrm{Ph})(0.42 \mathrm{~g}, 42 \%)$, m.p. $100^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 58.6; H, 3.3; N, 11.5. $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, $59.00 ; \mathrm{H}, 3.30 ; \mathrm{N}, 11.47 \%) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2229 \mathrm{~s}(\mathrm{CN})$ and $1668 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Compound $7\left(\mathrm{Ar}=\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)(0.57 \mathrm{~g}, 42 \%)$, m.p. $131^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 51.3; H, 2.6; N, 9.65. $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 51.80 ; \mathrm{H}, 2.52 ; \mathrm{N}, 10.07 \%)$; $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2225 \mathrm{~s}$ (CN) and $1667 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.55(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar})$ and $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

Compound $7\left(\mathrm{Ar}=\mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)(0.54 \mathrm{~g}, 48 \%)$, m.p. $143{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 57.2; H, 3.6; N, 9.8. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, $56.90 ; \mathrm{H}, 3.60 ; \mathrm{N}, 10.02 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2227 \mathrm{~s}$ (CN) and $1667 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.58(2 \mathrm{H}, \mathrm{d}$, $\mathrm{Ar}), 6.95(2 \mathrm{H}, \mathrm{d}, \mathrm{Ar}), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $2.37(\mathrm{~s}, 3 \mathrm{H})$.

Compound $7\left(\mathrm{Ar}=\mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)(0.56 \mathrm{~g}, 45 \%)$, m.p. $131^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 49.7; H, 2.3; N, 14.2. $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires C, $49.90 ; \mathrm{H}, 2.42 ; \mathrm{N}, 14.54 \%$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2228 \mathrm{~s}$ (CN) and $1671 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.0(2 \mathrm{H}, \mathrm{d}$, Ar), 8.45 ($2 \mathrm{H}, \mathrm{d}, \mathrm{Ar}$) and $2.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

Compound $7\left(\mathrm{Ar}=\mathrm{p}-\mathrm{MeC} \mathrm{C}_{6} \mathrm{H}_{4}\right)(0.86 \mathrm{~g}, 61 \%)$, m.p. $132^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 60.3; H, 3.9; N, 10.7. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 60.46 ; \mathrm{H}, 3.88 ; \mathrm{N}, 10.85 \%) ; v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2227 \mathrm{~s}$ (CN) and $1658 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.40(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar})$ and $2.48(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ and COMe$) ; \delta_{\mathrm{C}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 182.7$ (COMe), 173.6 (CNCOMe), $122.8\left(\mathrm{~s}, p-\mathrm{MeC}_{6} \mathrm{H}_{4}-\mathrm{C}\right.$), 114.3 ($\mathrm{s}, \mathrm{C}-$ $C \mathrm{~N}), 110.1(\mathrm{~s}, \mathrm{C}-\mathrm{CN}), 27.28(\mathrm{COMe})$ and $22\left(\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$.

Preparation of the 2-Oxo-1,3-thiazole-4-calboxylic Acid 8 ($\mathrm{Ar}=\mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) and the 2-Oxo-1,3-thiazole-4-carboxamide $11\left(\mathrm{Ar}=\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$.-A suspension of compound $6(\mathrm{Ar}=$ $\left.p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)(0.467 \mathrm{~g}, 1 \mathrm{mmol})$ in conc. $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$ was heated under reflux for 2 h . After dilution with water, a precipitate of compound $8(0.2 \mathrm{~g}, 69 \%)$ was obtained. The same compound $8\left(\mathrm{R}^{1}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right)$ was obtained if compound $7\left(\mathrm{R}^{1}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right)(0.2 \mathrm{~g}, 1 \mathrm{mmol})$ was heated for 2.5 h under reflux in conc. $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$. Compound $7\left(\mathrm{R}^{1}=p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right)$ gave a mixture of products 8 and 11 after reflux for 2 h in conc. $\mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$. Co-product 8 was eliminated by rinsing of the precipitate with aq. $\mathrm{NaHCO}_{3}\left(0.5 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and the remaining product 11 was recrystallized from EtOH.

Compound 8 ($\left.\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)(0.16 \mathrm{~g}, 80 \%)$, m.p. $227^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3400-3200 \mathrm{br}(\mathrm{NH}, \mathrm{OH}), 1729 \mathrm{~s}$ (CO), 1694vs (CO), 1680br (CO) and $900 \mathrm{br}(\mathrm{OH}) ; \delta_{\mathrm{H}}(80 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}+\mathrm{TFA} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.30(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; m / z 226\left(\mathrm{M}^{\bullet}\right), 248$ $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 238(\mathrm{M}-\mathrm{CO})^{+}, 222(\mathrm{M}-\mathrm{HNCO})^{+}, 166$ $\left(\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{~S}\right)^{++}$and $120\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CS}\right)^{\cdot+}$.
Compound $11\left(\mathrm{Ar}=\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)\left(0.15 \mathrm{~g}, 60 \%\right.$), m.p. $232{ }^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3390-3166 \mathrm{br}(\mathrm{NH}), 1739 \mathrm{w}(\mathrm{CO})$ and 1682s (CO); $\delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{TFA} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.35(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; m / z 254\left(\mathrm{M}^{++}\right), 237\left(\mathrm{M}+\mathrm{NH}_{3}\right)^{\cdot+}, 209(237-$ $\mathrm{CO})^{.+} 181(209-\mathrm{CO})^{.+}$and $155\left(\mathrm{M}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CS}\right)^{.+}$ (Found: $\mathrm{M}^{+}, 253.9918 . \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $M, 253.9917$).

Preparation of α-Thiocyanato Amide 9 ($A r=P h$, p$\mathrm{ClC}_{6} \mathrm{H}_{4}$).-An epoxide $1\left(\mathrm{R}^{1}=\mathrm{Ph}, p-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{H}\right)(0.5$ $\mathrm{mmol})$ was added to a solution of $\mathrm{NH}_{4} \mathrm{SCN}(0.76 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{MeCN}\left(60 \mathrm{~cm}^{3}\right)$ (distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$) and the reaction mixture was put in a refrigerator for $18 \mathrm{~h} . \mathrm{MeCN}\left(40 \mathrm{~cm}^{3}\right)$ was evaporated off and the residue was diluted with water $\left(200 \mathrm{~cm}^{3}\right)$. If the product 9 precipitated out it was filtered off, otherwise it was extracted with diethyl ether. Work-up gave compound 9 $(A r=P h)(0.62 \mathrm{~g}, 55 \%)$, m.p. $144^{\circ} \mathrm{C}$ (from benzene) (Found: C, 56.25; H, 4.1; $\mathrm{N}, 14.8$. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OS}$ requires C, $56.30 ; \mathrm{H}, 4.16$; N , 14.57%); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3381 \mathrm{~s}$ (NH), 3250br (NH), 2159s
(SCN) and $1668 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz}\right.$; pyridine; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 8.72$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $5.82(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$.

Compound $9\left(\mathrm{Ar}=\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)(0.72 \mathrm{~g}, 65 \%)$, m.p. $157^{\circ} \mathrm{C}$ (from benzene) (Found: C, 47.7; H, 3.2; N, 12.2. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{OS}$ requires C, $47.78 ; \mathrm{H}, 3.09 ; \mathrm{N}, 12.38 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3383 \mathrm{~s}$ $(\mathrm{NH}), 3250 \mathrm{br}(\mathrm{NH}), 2158 \mathrm{~s}(\mathrm{SCN})$ and $1668 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}(80 \mathrm{MHz}$; pyridine; $\mathrm{Me}_{4} \mathrm{Si}$) $8.77(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ and $5.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$.

Preparation of Amide Thiocarbamate $10(A r=P h)$.--Thiocyanate amide $9(\mathrm{Ar}=\mathrm{Ph})(0.3 \mathrm{~g}, 1.6 \mathrm{mmol})$ was dissolved in TFA $\left(5 \mathrm{~cm}^{3}\right)$. After 18 h a precipitate of compound 10 was filtered off ($0.191 \mathrm{~g}, 91 \%$), m.p. $193{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, $50.9 ; \mathrm{H}, 4.9 ; \mathrm{N}, 13.4$. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 51.14 ; \mathrm{H}, 4.76$; N , 13.33%); $v_{\max }$ (Nujol)/ $\mathrm{cm}^{-1} 3400 \mathrm{~s}$ (NH), 3200 w (NH), 1645 vs (CO) and $1605 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{TFA} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.44$ ($5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$) and $5.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$.

Preparation of Ester 12 ($A r=P h$).-To a solution of acid 2 ($\mathrm{Ar}=\mathrm{Ph}$) in absolute ethanol $\left(30 \mathrm{~cm}^{3}\right)$ were added two drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and then the reaction mixture was heated under reflux for 68 h . After dilution with water, extraction with diethyl ether and evaporation of the extract were carried out to give compound $12(A r=P h)(0.5 \mathrm{~g}, 81 \%)$, m.p. $137^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 54.8; H, 5.3; N, 6.05. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 55.24$; $\mathrm{H}, 5.43 ; \mathrm{N}, 5.85 \%$); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 3524 \mathrm{w}(\mathrm{NH}), 1740 \mathrm{~s}(\mathrm{CO})$ and $1702 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}+\mathrm{TFA} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.60(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 5.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.24\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right)$ and $1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{Me})$.

Preparation of 2-Acetylimino-1,3-oxaselenoles 13 ($\mathrm{Ar}=\mathrm{p}$ $\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}$).-Epoxide 1 $\left(\mathrm{R}^{1}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, p-\mathrm{MeOC} \mathrm{H}_{4}, p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\right.$ H) was added to a solution of $\mathrm{KSeCN}(1 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}$ $\left(10 \mathrm{~cm}^{3}\right)$. After 30 min at room temperature, the reaction mixture was put into a refrigerator for 1 h . The precipitate of AcOK was filtered off and $\mathrm{Ac}_{2} \mathrm{O}$ was evaporated off under reduced pressure to give compound $13\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$; yield, m.p., and spectral data were as published ${ }^{7 a}$ (Found: C, $44.15 ; \mathrm{H}$, 2.2; $\mathrm{N}, 8.25$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Se}$: C, 44.26; H, 2.16; N , 8.60%); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 182.8$ (COMeCO), 176 (CNAc), $126.2\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}-\mathrm{C}\right), 115.93(\mathrm{CN}), 110(C-\mathrm{CN})$ and 27.43 (COMe).

Compound $13\left(\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$; yield, m.p., and spectral data were published ${ }^{7 a}$ (Found: C, $48.75 ; \mathrm{H}, 3.2 ; \mathrm{N}, 8.65$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Se}: \mathrm{C}, 48.61 ; \mathrm{H}, 3.14 ; \mathrm{N}, 8.72 \%$); $m / z 322\left(\mathrm{M}^{+}+\right.$), $280\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}\right)^{+}, 253\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{COCN}\right)^{+}, 174(280-$ $\mathrm{SeCN})^{+}, 199\left(\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CSe}\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}\right)^{+}$.

Compound 13 ($\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$); yield, m.p., and spectral data were as published ${ }^{7 a}$ (Found: C, 43.1; H, 2.1; N, 12.4. Calc. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Se}: \mathrm{C}, 42.88 ; \mathrm{H}, 2.10 ; \mathrm{N}, 12.50 \%$).

Compound $13\left(\mathrm{Ar}=\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)(0.69 \mathrm{~g}, 45 \%)$, m.p. $149^{\circ} \mathrm{C}$ (EtOH) (Found: C, 51.5; H, 3.4; N, 9.1; $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ Se requires $\mathrm{C}, 51.18 ; \mathrm{H}, 3.30 ; \mathrm{N}, 9.18 \%)$; $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 2223 \mathrm{~s}(\mathrm{CN})$ and $1655 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.40(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 2.46$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$) and $2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$.

Preparation of the 2-Amino-1,3-thiazole 15.-An ethanolic (40 cm^{3}) solution of epoxide $14(1 \mathrm{~g}, 4.3 \mathrm{mmol})$ and thiourea $(0.33 \mathrm{~g}$, 4.3 mmol) was heated under reflux for 16 h . After cooling, the precipitate of compound 15 was isolated (9%), m.p. $180^{\circ} \mathrm{C}$ (from $\mathrm{EtOH})$; spectral data were identical with those in the literature. ${ }^{8}$

Preparation of the 2-Acetylimino-1,3-oxathiole 16.-A solution of KSCN $(0.417 \mathrm{~g}, 4.3 \mathrm{mmol})$ and epoxide $14(1 \mathrm{~g}, 4.3$ $\mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was heated to the boiling point and then left to cool to room temperature for 5 h . The obtained precipitate of compound 16 was filtered off, and washed with water ($0.36 \mathrm{~g}, 30 \%$), m.p. $104^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 57.35 ; $\mathrm{H}, 4.4 ; \mathrm{N}, 4.5 . \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 57.79 ; \mathrm{H}, 4.46 ; \mathrm{N}$,

Table 3 Selected torsion angles (${ }^{\circ}$) with e.s.d.s in parentheses for 2-acetylimino-3-(4-tolyl)-1,3-oxathiole-5-carbonitrile 7 (Ar=p$\left.\mathrm{MeC}_{6} \mathrm{H}_{4}\right)^{a}$

$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	1.8(6)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	-1.2(7)
$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	-177.6(9)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(10)$	176.2(8)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)$	-2.0(6)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	0.5(7)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)$	177.5(10)
$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	-178.8(11)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	1.18)
$\mathrm{C}(2)-\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	177.6(10)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	0.3(6)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	-176.8(14)
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{N}(9)$	-147(3)
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	-175.6(13)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{N}(9)$	29(3)
$\mathrm{C}(8)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	7.3(9)
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)$	36.9(8)
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(15)$	-139.3(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)$	-146.3(14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(15)$	37.5(10)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{O}(1)$	-5.4(9)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	175.7(11)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-178.8(13)
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	177.3(13)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-2.6(9)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	1.1 (8)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	3.5(9)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-2.9(9)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	177.0(14)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$1.5(9)$
$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-178.5(14)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	-0.6(9)

${ }^{a}$ Sign convention from ref. 12.
$4.80 \%) ; v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1733 \mathrm{~s}(\mathrm{CO})$ and $1659 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}(80$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2}\right), 2.43$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and $1.25(3 \mathrm{H}, \mathrm{t}, \mathrm{Me})$.
X-Ray Structural Determination.-Thin crystals of compound 7 ($\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}$) were grown from ethanolic solution. They exhibited poor scattering properties. Several crystals were tested.

Crystal data. $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, \mathrm{M}_{\mathrm{r}}=258.3$. Monoclinic, $a=$ $10.441(5), b=7.354(3), c=16.235(8) \AA, \beta=100.50(6)^{\circ}, V=$ 1226(2) \AA^{3} (by least-squares refinement on diffractometer angles for 25 automatically centred reflections; $8<\theta<12^{\circ}$ range, $\lambda=0.71069 \AA)$, space group $P 2_{1} / c\left(\mathrm{~N}^{\circ} 14\right), Z=4, D_{\mathrm{x}}=$ $1.399 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=536$. Fragile, transparent, thin plate-lik.e crystal $0.16 \times 0.40 \times 0.04 \mathrm{~mm}, \mu(\operatorname{Mo}-\mathrm{K} \alpha)=2.46 \mathrm{~cm}^{-1}$.

Data collection and processing. ${ }^{11}$ CAD-4-diffractometer, $\omega / 2 \theta$ mode with ω scan width $0.9+0.3 \tan \theta$, variable ω scan rate $1.8-6.7^{\circ} \mathrm{min}^{-1}$, graphite-monochromated MO-K α radiation, 5397 reflections measured up to $(\sin \theta / \lambda)_{\text {max }}=0.64 \AA^{-1}, \pm h$, $\pm k,+l ; 2670$ unique reflections $\left(R_{\text {int }}=0.056\right)$ and 1014 considered as observed [$I>3 \sigma(I)$]. Control-intensity decline of 12% was corrected during processing.

Structure analysis and refinement. Automatic direct methods. Full-matrix least-squares refinement with all non-hydrogen atoms unisotropic and hydrogens in calculated positions with an overall isotropic temperature factor $U_{\text {iso }}=0.10(1) \AA^{2}$. The weighting scheme, $w=\left[\sigma^{2}\left(F_{0}\right)+0.0056 F_{0}{ }^{2}\right]^{-1}$, with $\sigma\left(F_{0}\right)$ from counting statistics, was used during anisotropic refinement. Final conventional R - and R_{w}-values are 0.071 and 0.077 and the corresponding S-value was 1.26 for 1014 reflections and 164 parameters. The maximum and minimum residual electron density in the final $\Delta \sigma$ map were +0.397 and $-0.389 \mathrm{e} \AA^{-3}$. Programs, computer used, and sources of scattering factor data are given in ref. 11. The derived structure
is given in Fig. 1. Final atomic co-ordinates are given in Table 1, bond lengths and angles in Table 2, and selected torsion angles in Table 3.*

* Supplementary data (see section 5.6.3 of Instructions for Authors, J. Chem. Soc., Perkin Trans 1, 1993, issue 1). Tables of torsion angles, bond-lengths and angles and hydrogen coordinates have been deposited at the Cambridge Crystallographic Data Centre.

References

1 (a) M. Sander, Chem. Rev., 1966, 66, 297; (b) E. Vedejs and G. A. Kraft, Tetrahedron, 1982, 38, 2857; (c) K. Kloc, E. Kubiez and J. Mlochowski, Heterocycles, 1984, 22, 2517; (d) K. Jankowski and R. Harvey, Commun. R. Soc. Edinburgh, Phys. Sci., 1972, 627; (e) D. van Ende and A. Krief, Tetrahedron Lett., 1975, 2709; (f) M. O. Brimeyer, A. Mehrota, S. Quici, A. Nigam and S. L. Regen, J. Org. Chem., 1980, 45, 4254; (g) H. Bouda, M. E. Borredon, M. Delmas and A. Gaset, Synth. Commun., 1987, 17, 943.
2 E. J. Corey, Pure Appl. Chem., 1967, 14, 19.
3 J. L. Guinamant and A. Robert, Tetrahedron, 1986, 42, 1169; A. Robert, S. Jaguelin and J. L. Guinamant, Tetrahedron, 1986, 42, 2275; P. le Grel, M. Baudy-Floc'h and A. Robert, Synthesis, 1987, 306; A. Majcen-Le Marechal, A. Robert and I. Leban, Tetrahedron, 1990, 46, 453.

4 I. Leban, Acta Crystallogr., Sect. B, 1976, 32, 1601.
5 G. Ottmann, G. D. Vickers and A. Hocks, J. Heterocycl. Chem., 1974, 4, 527.
6 E. G. Breitholle and C. H. Stammer, J. Org. Chem., 1976, 41, 1344; I. Wagner and H. Musso, Angew. Chem., Int. Ed. Engl., 1983, 22, 816.

7 (a) A. Robert and A. Majcen-Le Marechal, J. Chem. Soc., Chem. Commun., 1978, 447; (b) J. Nakayama, H. Sugiura, M. Hoshino and H. Kobayashi, Tetrahedron Lett., 1985, 26, 2201.

8 M. N. Hughes, Chemistry and Biochemistry of Thiocyanic Acid and its Derivatives, ed. A. A. Newman, Academic Press, London, 1975.
9 M. Ferrey, A. Robert and A. Foucaud, C. R. Séances Acad. Sci., Ser. C, 1973, 277, 1153.
10 J. J. Pommeret and A. Robert, Tetrahedron, 1971, 27, 2977; A. Robert and A. Foucaud, Bull. Soc. Chim. Fr., 1969, 2537.
11 J. V. Brencic, B. Ceh and I. Leban, Acta Crystallogr., Sect. C, 1991, 47, 311; I. Leban, J. Svete, B. Stanovnik and M. Tisler, Acta Crystallogr., Sect. C, 1991, 47, 1552.
12 W. Klyne and V. Prelog, Experientia, 1960, 16, 521.

[^0]: * Present address: Groupe de Recherches de Chimie Structurale, Université de Rennes I, URA CNRS 704, Avenue du Général Leclerc, 35042 Rennes Cėdex, France.

